TFAWS Interdisciplinary Paper Session

Co-simulation modelling of a medium sized thermal vacuum facility for test feasibility

studies

Presented By
Matthew Vaughan
Thermal Analysis Engineer

TFAWS
MSEC • 2017

ANALYSIS WORKSHOP

Thermal & Fluids Analysis Workshop TFAWS 2017 August 21-25, 2017 NASA Marshall Space Flight Center Huntsville, AL

Background

- Thermal Modelling of TVAC chambers (LSS, PHENIX)
- Spacecraft thermal design:
 - Proba 3 / SMILE / JUICE
- STEP-TAS model conversions
- Development of thermal tools post processor

Overview

- PHENIX Thermal Vacuum Facility
- Objectives
- Software selection
- ESATAN Model
 - Software description
 - Model description
 - Main heat path + convection
- EcosimPro Model
 - Software description
 - Model description
- Co-simulation
- User Interface
- Conclusions and model validation plan

PHENIX

Name	Volume	Length	Diameter	Min Temp.	Max Temp.	Thermal Channels	Sun Diameter
VTC 1.5	10 m ³	2.5 m	1.5 m	100 K	423 K	2	N/A
Phenix	160 m ³	10 m	4.5 m	100 K	373 K	6	N/A
LSS	2300 m ³	10 m	9.3 m	100 K	350 K	2	6 m

Objectives

- 1. Design a feasibility test with a given chamber blockage and dissipation, determine the heat loads on each shroud:
 - $GN_2 = 600 \text{ W/shroud} \text{max 2kW total}$
 - $LN_2 = 60 \text{ kW total}$
- 2. Estimate the shroud temperature homogeneity (ΔT), to determine if it is acceptable for a given test.
- 3. Develop a tool for use by a thermal non-specialist.

ESATAN-TMS

EcosimPro

Libraries:

- European Space Propulsion Simulation System (ESPSS)
- Co-simulation with ESATAN

Why co-simulation?

ESATAN-TMS

- Option to include a user's spacecraft thermal model
- Detailed temperature homogeneity map of each shroud

EcosimPro

- Allow component modelling of pipes, valves, inlets, outlets and control PI logic – easy diagnostics and variable access
- Co-simulation library compatible with ESATAN-TMS
- Modelling of mixing of cold and hot GN₂ lines
- Option to integrate the tool into an Excel plug-in

ESATAN Model

- Radiative heat exchange inside the thermal tent
- Conductive heat exchanges between the pipe network and thermal tent walls
- Convective heat exchange from the fluid to pipe network

Main Heat Path

<u>Key</u>

Nodes

В

Boundary

D

Diffusion

D

Diffusion - fluid

Conductors

GR: Radiative

 $(\/\/\)$

GF: Fluid

GL: Linear

Single Shroud Model

Co-simulation Connection

Excel interface

Model Validation

- Access to a range of thermocouple data on each shroud to estimate shroud temperature homogeneity
- Gaseous N₂ valve positions can be adjusted in the model
- Exercise to correlate steady state set-points of pipe temperatures.

References

- [1] ESPSS European Space Propulsion System Simulation, EcosimPro Libraries User Manual, (VOLUME 1), 30-08-2015, Empresarios Agrupados, Madrid, Spain
- [2] ESATAN-TMS Thermal Modelling Suite, ITP Engines, Leicester, UK, Online: https://www.esatan-tms.com/, Accessed: 28-07-2017
- [3] ESTEC Test Centre Virtual Tour, ESA, Online: http://esamultimedia.esa.int/multimedia/ESTEC/virtualtour/, Accessed: 28-07-2017
- [4] CoolProp User-friendly interface around the full capabilities of NIST REFPROP, Online: http://www.coolprop.org/, Accessed: 28-07-2017